
Part4 : Cache Memory 

 

1.1 Cache Memory  

Principles Cache memory is designed to combine the memory access time of expensive, high-

speed memory combined with the large memory size of less expensive, lower-speed memory. 

The concept is illustrated in Figure 4.1a.  

The cache contains a copy of portions of the main memory. When the processor attempts to read 

a word of memory, a check is made to determine if the word is in the cache. If so, the word is 

delivered to the processor. If not, a block of main memory, consisting of some fixed number of 

words, is read into the cache and then the word is delivered to the processor.  

Figure 4.1b depicts the use of multiple levels of cache. The L2 cache is slower and typically 

larger than the L1 cache, and the L3 cache is slower and typically larger than the L2 cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 depicts the structure of a cache/main-memory system. Several terms are introduced: 



 

 Block: The minimum unit of transfer between cache and main memory 

 Frame: To distinguish between the data transferred and the chunk of physical memory, the 

term frame, or block frame, is sometimes used with reference to caches.  

 Line: A portion of cache memory capable of holding one block, so-called because it is usually 

drawn as a horizontal object.  

 Tag: A portion of a cache line that is used for addressing purposes, as explained subsequently 

 

Main memory consists of up to  2
n
 addressable words, with each word having a unique n-bit 

address.This memory is considered to consist of a number of fixed-length blocks of K words 

each. That is, there are blocks in main memory. That is, there are M=2
n
/k blocks in main 

memory.The cache consists of M lines. Each line contains K words, plus a tag. 

The term line size refers to the number of data bytes, or block size, contained in a line. 

 

Figure 4.3 illustrates the read operation. The processor generates the read address (RA) of a word 

to be read. If the word is contained in the cache (cache hit), it is delivered to the processor. 

If a cache miss occurs, two things must be accomplished: 

 the block containing the word must be loaded in to the cache,  

 and the word must be delivered to the processor. 

 

Note: One possible technique that is used to increase the bandwidth is memory interleaving. To 

achieve best results, we can assume that the block brought from the main memory to the cache, 

upon a cache miss. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

The organization shown in Figure 4.4, which is typical of contemporary cache organizations. In 

this organization: 

 the cache connects to the processor via data, control, and address lines. 

  The data and address lines also attach to data and address buffers, which attach to a 

system bus from which main memory is reached.  

 When a cache hit occurs, the data and address buffers are disabled and communication is 

only between processor and cache, with no system bus traffic. 

 When a cache miss occurs, the desired address is loaded onto the system bus and the data 

are returned through the data buffer to both the cache and the processor 

 

 

 

 

 

 

 

 

 

 



4.2 Elements of Cache Design 

Although there are a large number of cache implementations, there are a few basic design 

elements that serve to classify and differentiate cache architectures.  

 

Cache Addresses 

 For reads to and writes from main memory, a hardware memory management unit (MMU) 

translates each virtual address into a physical address in main memory. 

  When virtual addresses are used, the system designer may choose to place the cache 

between the processor and the MMU or between the MMU and main memory (Figure 

4.5). 

  A logical cache  : also known as a virtual cache, stores data using virtual addresses. The 

processor accesses the cache directly, without going through the MMU.  

 A physical cache :stores data using main memory physical addresses 

 

 

 

 

 

 

 

 

 

 

 

 

Cache Size  

   We would like the size of the cache to be small enough so that the overall average cost per bit is 

close to that of main memory alone and large enough so that the overall average access time is 

close to that of the cache alone. There are several other motivations for minimizing cache size. 

The larger the cache, the larger the number of gates involved in addressing the cache. Table 4.1 

lists the cache sizes of some current and past processors.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logical Cache Organization(Mapping Function) 

   Because there are fewer cache lines than main memory blocks, an algorithm is needed for 

mapping main memory blocks into cache lines. Further, a means is needed for determining which 

main memory block currently occupies a cache line . The choice of the mapping function dictates 

how the cache is logically organized. Three techniques can be used: direct, associative, and set-

associative. 

  

 

 

 

 

 

 

1-Direct Mapping:  

  The simplest technique, known as direct mapping, maps each block of main memory into only 

one possible cache line. The mapping is expressed as:          i = j modulo m 

i = cache line number 

 j = main memory block number  

m = number of lines in the cache 



 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

1. Word field = log2 B, where B is the size of the block in words. 

2.  Block field = log2 N, where N is the size of the cache in blocks.  

3. Tag field = log2 (M/N), where M is the size of the main memory in blocks.  

4. The number of bits in the main memory address = log2 (B x M) 

 

Example :  Consider, for example, the case of a main memory consisting of 4K blocks, a cache 

memory consisting of 128 blocks, and a block size of 16 words. The following table shows the 

division of the main memory and the cache according to the direct-mapped cache technique. As 

the figure shows, there are a total of 32 main memory blocks that map to a given cache block. For 

example, main memory blocks 0, 128, 256, 384, ... , 3968 map to cache block 0.  

Table 4.2 Mapping main memory blocks to cache blocks 

 

 

 

 



1. Word field =log2 B = log2 16 = log2 2
4
 = 4 bits  

2. Block field = log2 N = log2 128 = log2 2
7
 = 7  

3. bits Tag field = log2 (M/N) = log2 (2
2
 X2

10
/2

7
 ) = 5 bits  

4. The number of bits in the main memory address = log2 (B X M) = log2 (2
4
 X 2

12
) = 16 

bits.  

 

 

 

 

 

 

 

 

Example:       Word field B= 64 word 

                        Block field = 256 block 

                        Main memory= 8 M block 

 

Answer:  Word field B= log264 = log22
6 

= 6 
                        

Block filed= log2256 = log22
8 
=8 

            bits Tag field = log2 (M/N) = log2 (2
3
 x 2

20
/2

8
 ) = log2(2

23
/2

8
 )=15 bits  

                 bits in the main memory address = log2 (B X M) = log2 (2
6
 x 2

23
) =29 

  

 

 

 

 

 

 

                                                                                   

 

                                           

 

 

 

The following Figure 4.7 illustrates the general mechanism.: 

15 bit                        8 bit                                6 bit 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2- Fully ASSOCIATIVE MAPPING 

 Associative mapping overcomes the disadvantage of direct mapping by permitting each main 

memory block to be loaded into any line of the cache(Figure 4.6b) .The Tag field uniquely 

identifies a block of main memory. To determine whether a block is in the cache, the cache 

control logic must simultaneously examine every line’s tag for a match. Figure 4.9 illustrates the 

logic 

 

 

 

 

 

 

 

 

 

 

Example : Compute the above three parameters for a memory system having the following 

specification: size of the main memory is 4K blocks, size of the cache is 128 blocks, and the 

block size is 16 words. Assume that the system uses associative mapping.  

1. Word field =log2 B =log2 16 =log2 2
4
 = 4 bits  

2. Tag field =log2 M =log2 2
2
 x 2

10
 = 12 bits  

3. The number of bits in the main memory address =log2 (B x M) =log2 (2
4
 x2

12
) = 16 bits. 

  

 

 

 

Example: Word field B= 64       ,Main memory= 8 M 

 

Answer: Word field B= log264 = log22
6 
= 6 

          bits Tag field = log2 (M) = log2(2
23

)=23 bits  

               bits in the main memory address = log2 (B X M) = log2 (2
6
 x 2

23
) =29 

  

 

 

23 bit                                                      6 bit 



Example  

Figure 4.11 shows our example using associative mapping. A main memory address consists of a 

22-bit tag and a 2-bit byte number. The 22-bit tag must be stored with the 32-bit block of data for 

each line in the cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE:  CONTENT-ADDRESSABLE MEMORY(CAM): A CAM is designed such that when a 

bit string is supplied, the CAM searches its entire memory in parallel for a match. If the content is 

found, the CAM returns the address where the match is found and, in some architectures, also 

returns the associated data word. This process takes only one clock cycle. Figure 4.12 is a 

simplified illustration of the search function of a small CAM with four horizontal words, each 

word containing five bits, or cells. CAM cells contain both storage and comparison circuitry 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-SET-ASSOCIATIVE MAPPING 

 Set-associative mapping is a compromise that exhibits the strengths of both the direct and 

associative approaches while reducing their disadvantages. In this case, the cache consists of 

number sets, each of which consists of a number of lines. The relationships are: 

                                       m = v × k  

                                       i = j modulo v 

i = cache set number 

 j = main memory block number  

m = number of lines in the cache 

 v = number of sets 

 k = number of lines in each se 

 

Figure 4.13a illustrates this mapping for the first v blocks of main memory. As with associative 

mapping,  

 each word maps into multiple cache lines.  

 For set-associative mapping, each word maps into all the cache lines in a specific set, so 

that main memory block maps into set 0, and so on.  

 Thus, the set-associative cache can be physically implemented as v associative caches, 

typically implemented as v CAM memories.  

It is also possible to implement the set-associative cache as k direct mapping caches, as shown in 

Figure 4.13b.  

 Each direct-mapped cache is referred to as a way, consisting of v lines. 

 The first v lines of main memory are direct mapped into the v lines of each way; the next 

group of v lines of main memory are similarly mapped, and so on.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 For set-associative mapping, the cache control logic interprets a memory address as three fields: 

Tag, Set, and Word. The d set bits specify one of sets. The s bits of the Tag and Set fields specify 

one of the blocks of main memory. Figure 4.14 illustrates the cache control logic. 

Example :Figure 4.15 shows our example using two-way set-associative mapping with two lines 

in each set. The 13-bit set number identifies a unique set of two lines within the cache. It also 

gives the number of the block in main memory, modulo 2
13

 . Any of those blocks can be loaded 

into either of the two lines in the set. Note that no two blocks that map into the same cache set 

have the same tag number. For a read operation, the 13-bit set number is used to determine which 

set of two lines is to be examined. Both lines in the set are examined for a match with the tag 

number of the address to be accessed 

 



 

 

  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 4 Compute the above three parameters (Word, Set, and Tag) for a memory 
system having the following specification: size of the main memory is 4K blocks, size of 
the cache is 128 blocks, and the block size is 16 words. Assume that the system uses 
set-associative mapping with four blocks per set. 

 


